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ABSTRACT

Maize stalk lodging is the structural failure of the stalk prior to harvest and is a major 

problem for maize (corn) producers and plant breeders. To address this problem, it is 

critical to understand precisely how geometric and material parameters of the maize 

stalk influence stalk strength. Computational models could be a powerful tool in such 

investigations, but current methods of creating computational models are costly, time-

consuming, and most importantly, do not provide parameterized control of the maize 

stalk parameters. The purpose of this study was to develop and validate a parameterized

three-dimensional model of the maize stalk. The parameterized model provides 

independent control over all aspects of the maize stalk geometry and material 

properties. The model accurately captures the shape of actual maize stalks and is 

predictive of maize stalk stiffness and strength. The model was validated using 

stochastic sampling of material properties to account for uncertainty in the values and 

influence of mechanical tissue properties. Results indicated that buckling is influenced 

by material properties to a greater extent that flexural stiffness. Finally, we demonstrate 

that this model can be used to create an unlimited number of synthetic stalks from 

within the parameter space. This model will enable the future implementation of 

parameter sweep studies, sensitivity analysis and optimization studies, and can be used 

to create computational models of maize stalks with any desired combination of 

geometric and material properties.
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INTRODUCTION

Maize stalk lodging (wind-induced failure of the stalk) represents a major source 

of loss for farmers (Flint-Garcia et al., 2003; Duvick, 2005).  In late-season lodging, 

maize stalks fail due to localized (Brazier) buckling which manifests as a characteristic 

“creasing” of the stem just above a node (Robertson et al., 2015) The term “buckling” 

refers to a sudden change in shape of a structural component under loading, often 

resulting in collapse. Brazier buckling involves localized shape change and should not be

confused with the more well-known Euler buckling, which applies to large-scale 

buckling of columns. The creasing of a drinking straw that occurs when the straw is 

gently bent is the most commonplace example of Brazier buckling. 

Stalk bending strength refers to the maximum bending load that can be applied 

to a stalk prior to the onset of buckling. Stalk bending strength is a major factor in 

determining lodging resistance and  has been shown in both empirical and 

computational studies to be closely related to stalk morphology (Gomez et al., 2017;  

Robertson et al., 2017, 2022).  In this paper, “strength” always refers to ultimate 

bending strength. Tissue strength is also of interest in predicting ultimate strength but 

tissue strength is not addressed in this study.

It has been proposed that relatively minor changes in stalk morphology might 

lead to significant increases in stalk strength (Von Forell et al., 2015). To improve maize 

stalk strength through breeding and/or biotechnology, two key advances are needed: (1) 

the ability to rapidly measure the morphology of the maize stalk, and (2) insight into 

which morphological features are most closely related to maize stalk strength. This 

study addresses the second need by developing a method for manipulating the 

morphology of maize stalks.

The finite element method has previously been used to create models of maize 

stalks (Stubbs, 2019; Stubbs et al., 2019, 2020, 2022; Von Forell et al., 2015). In the 

broader biomechanics literature, the finite element method is a powerful and pervasive 

tool. In human biomechanics, the finite element method has been used to study a wide 

range of topics, including the human knee, foot, pelvis, liver, brain, heart arteries, and 

many others (Andersen et al., 2021; Besnault et al., 1998; Erdemir et al., 2006). There 
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are two primary methods used to create specimen-specific models. First, image-based 

modeling is commonly used to create models directly from imaging data such as CT or 

MRI scans. Such models typically provide very high geometric fidelity and are thus very 

close approximations to the specimens from which they were derived. These models 

typically require a significant amount of manual segmentation and modeling effort by a 

trained technician (Patil & Deore, 2013). As a result, these models are costly and time-

consuming to create. Moreover, once created, the geometry of these models are 

essentially static and cannot be manipulated to investigate the influence of geometry 

(Cook et al., 2014).

To overcome these limitations, parameterized modeling schemes have been 

developed. Parameterized models typically utilize geometric features and/or landmarks 

of the system to be modeled (Danelson et al., 2009; Maurel et al., 1997; Sigal et al., 

2010). Parameterized models provide good approximations of the geometry of the 

desired specimen and provide control over model shape through the adjustment of 

model parameters. This approach dramatically expands the utility of these models by 

enabling parametric studies, sensitivity studies, and optimization studies. However, the 

parameterization scheme typically requires geometric approximations, so parameterized

models do not allow the same level of geometric detail as image-based models.  

Ottesen et al., (2022) used machine learning techniques to develop a two-

dimensional parameterization of the maize cross-section. The Ottesen model was based 

on a simple ellipse as the exterior boundary of the stalk and an offset ellipse as the 

boundary between rind and pith tissue. Finer geometric features such as the ear groove 

and various types of asymmetries in the model were captured using principal 

components derived from actual cross sections. Ottesen et al. reported that any desired 

level of geometric fidelity could be obtained by adding additional principal components. 

The model was validated under a variety of loading cases,  including bending, torsion, 

axial tension/compression, and transverse compression. Notably, the ellipse alone (no 

principal components) provided high predictive accuracy in all cases and required just 

three geometric parameters: major diameter, minor diameter, and rind thickness. The 

primary limitation of the Ottesen model is that it did not account for axial variation of 

the maize stalk. 
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A fully parameterized, three-dimensional model of the maize stalk would allow 

control over individual geometric features. Such a model could be used to determine 

which geometric features of the maize stalk are most closely related to maize stalk 

strength. It could also be used to determine the optimal stalk architecture that balances 

biomass with both strength and flexibility. The purpose of this study was to develop a 

three-dimensional parameterized model of the maize stalk. We validated this model in 

three ways. First, by assessing its geometric similarity to original stalks. Second, by 

determining the ability of this model to accurately predict flexural stiffness, and third, 

by assessing the ability of this model to predict the strength of maize stalks. In contrast 

with prior studies, stochastic (randomized) variation in material properties was used to 

account for the influence of material uncertainties on the validation process. The 

resulting model opens many avenues for advanced computational analyses of maize 

stalk strength.

METHODS

Overview

This study is based upon two important data sources from previous studies:  (1) 

CT scans of maize stalks,  and (2) corresponding physical 3-point bending tests 

(Robertson et al., 2016, 2017). Previous research has confirmed that 3-point bending 

tests can be used to asses stalk bending strength because these tests induce the same 

type of buckling failure observed in natural lodging (Robertson et al., 2014;  Robertson 

et al., 2015a; Robertson, et al., 2015b)

Figure 1 shows the physical testing arrangements along with sample CT scan 

images. This figure also depicts the creation of CT-based finite-element models (Stubbs 

et al., 2022), the use of CT scan data to create 2D parameterized models (Ottesen et al., 

2022) as well as the 3D parameterized models developed in this study.
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Figure 1: Overview illustration showing the relationships between physical

experiments, CT-scan data, and model types discussed in this study.

Empirical Data

Three-point bending tests and the CT-scanning process were described in 

previous studies (Robertson et al., 2016, 2017). Briefly summarized, approximately 900 

maize stalks were scanned and then tested in three-point bending. During bending tests,

stalks were gradually loaded until localized buckling occurred. This testing approach 

provided empirical measurement of two mechanical features of each stalk: flexural 

stiffness (also known as flexural rigidity), and ultimate bending strength. CT-scans 

provided detailed three-dimensional data on each maize stalk at a resolution of 78 

um/voxel. This resolution typically results in over 200 pixels across the minor diameter 
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of the stalk and over 100k pixels within each cross-section. Representative CT cross-

sections are shown in Figure 1. 

The CT data for each stalk consisted of approximately 1500 cross-sectional 

images. Because adjacent images were nearly identical to each other, a non-uniform 

sampling scheme was used. In this scheme, 46 cross-sectional images were extracted 

from each stalk using higher sampling density near the node, and lower sampling 

density in the internodes. The 46 sampling points can be seen as light gray vertical lines 

that intersect the longitudinal CT cross-section image in Figure 1. 

Parameterization Method

Ellipse-based axial sweep

Each cross-section of each stalk was approximated as an ellipse as described 

previously (Ottesen et al., 2022). The interior ellipse was offset from the exterior 

boundary by the rind thickness. The rind thickness was determined as the average 

distance between the interior and exterior boundaries of the maize stalk cross-section 

(Robertson et al., 2017). This process produced profiles for the major diameter a, minor 

diameter b, and rind thickness t as functions of axial location z for 900 individual stalks.

For each individual stalk, these three profiles define a three-dimensional shape that 

closely approximates the original stalk geometry. Figure 2 provides an illustration of the 

swept-ellipse geometry. 

Figure 2: Ellipse sweep model, depicting the 2D ellipse, ellipse parameters, parameter
profiles, and the resulting 3D ellipse model
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Parameter Profiles

The profiles, a(z), b(z), and t(z), exhibited distinct features that were present in 

virtually all stalks. Figure 3 depicts the data distributions for each parameter profile, 

with dark shading indicating high data density and light shading indicating low data 

density. The solid white line in the center of each chart represents the average profile.

Figure 3: Data distributions for major diameter, minor diameter, and rind thickness
profiles. Darkness intensity represents data density. The central white line represents

the average profile.

Profile Parameterization

Machine learning techniques and landmark identification were used to 

parameterize the essential features of each parameter profile. This was accomplished by 

iterating between principal component analysis (also known as empirical eigenfunction 

analysis) and landmark identification. Early attempts applied principal component 

analysis to each profile separately, or to all three profiles simultaneously. Although this 

approach does provide an immediate parameterization based on variance 

decomposition (Jackson, 2003), this method does not enable independent control of 

physical features and was therefore abandoned. For similar reasons, polynomial-based 

regression approaches were excluded because this provides no physical connection 

between coefficient values and physical features of the corn stalk.
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Landmarks were selected based on consistent and distinctive features which were

found to be present in virtually all stalk profiles. Most landmarks were peaks or valleys 

in the respective profiles. Each landmark was defined by two coordinate values. The first

coordinate was the axial location z. The z-axis origin was defined as the central peak in 

the rind thickness profile. This feature was chosen as a reference because it was (a) the 

most distinct of all landmarks, and (b) identifies the center of each node (the dividing 

line between stalk segments). The second coordinate was the perpendicular distance of 

each profile (major diameter, minor diameter, and rind thickness) from the z-axis. 

Figure 4 shows representative profiles with landmarks indicated by dots. Each profile 

contains six distinct landmarks: two endpoints and four peaks/valleys. Supplementary 

information included with this paper includes animations showing the degrees of 

freedom controlled by each parameter.

Figure 4: Representative profiles of the major diameter (top), minor diameter
(middle), and rind thickness (bottom). Landmarks are indicated by black dots, the

influence of each eigenfunction is represented by a double-headed arrow.
Supplementary animations have been provided to aid in interpreting these parameters.
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Custom software was developed to automatically identify these landmarks for 

each of the 980 x 3 = 2940 profiles used in the study. Principal component analysis was 

then used to capture and capture and parameterize the transition patterns between 

landmarks. A local, normalized coordinate system was defined for each neighboring pair

of landmark points. The original and subsequent coordinate systems are shown in 

Figure 3. The transverse values retained their original units but the transverse value of 

the first landmark was subtracted so that the coordinate value of the first landmark was 

(0,0). The local coordinate system is shown in Figure 3B. 

 Next, the landmark points were connected in the local coordinate system by a 

straight line. The final “subtracted” coordinate system captures the vertical distance 

between the line connecting the landmarks and individual points on the profile. The 

subtracted coordinate system is shown in Figure 5C. 

Figure 5: Coordinate systems used to calculate the principal component patterns

between landmark points. A: original coordinates, B:  local coordinates, C: subtracted

coordinates.
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These coordinate transformations can be expressed mathematically as follows, 

where each of the symbols are defined as shown in Figure 5, the subscript i is the index 

associated with landmarks, and braces, { }, indicate vectors of values in the specified 

coordinate systems:

(1)

(2)

(3)

(4)

Principal component analysis was then performed on the subtracted coordinate 

system data, ysub and zsub. Since all subtracted profiles have values of zero at each 

landmark, all empirical eigenfunctions also have zero values at landmarks. This allows 

empirical eigenfunctions to be added directly to the straight line connecting each pair of 

landmarks. The empirical eigenfunctions connecting landmarks can then be varied by 

linearly scaling the empirical eigenfunctions, {ek
i} using scaling coefficients, ck

i. Note 

that eigenfunctions are represented as vectors. The parameterization of each parameter 

profile between landmarks i and i+1 is thus given as follows:

(5)

Here, {ypar
i} represents the vector of parameterized sample points defining the 

parameter profile between landmarks i and i+1. The summation term represents the 

series of empirical eigenfunctions while the other terms on the right-hand side represent

a straight line connecting landmarks i and i+1. The index k refers to the series of 

empirical eigenfunctions.  The first principal component (or empirical eigenfunction) 

typically captured approximately 96% of the variation in a transition pattern. This 

approach allows any desired geometric fidelity to be captured by simply adding 

additional eigenfunction terms. 
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To summarize, the parameterized model of maize stalk morphology consists of an

axially varying elliptical cross-section. The variation in ellipse shape is defined by three 

parameter profiles: major diameter, minor diameter, and rind thickness (Figure 2).  

Each of these profiles is defined by six landmarks (Figure 4). Straight lines connect 

adjacent landmarks and transition patterns between landmarks are captured by linearly 

scaled empirical eigenfunctions (Figure 5). Any number of empirical eigenfunctions can 

be used in this scheme, which allows for complete reconstruction of the axial patterns of 

ellipse profiles when all eigenfunctions are utilized. We found that the first empirical 

eigenfunction captured the vast majority of geometric variation, so only one 

eigenfunction was used in this study. With a single empirical eigenfunction, the shape of

the parameterized 3D model is defined by 51 parameters, each of which can be 

independently adjusted/controlled. These parameters are shown in Figure 4 and listed  

Table S1 of the supplementary data that accompanies this paper. 

Generating Parameterized Models

The parameterized model provides the ability to fit the parameterized model to 

actual maize specimens. The parameterized model was fit to each of the original 900 

maize stalks in the database. Once the fitting process was completed, a subset of 

corresponding finite-element models were created. 

It is also possible to use the parameterized model to generate an arbitrary number of 

novel “synthetic” stalk models. This was accomplished using the normal copula method 

(McClarren et al., 2018). This method produces a synthetic population in which the 

mean values, standard deviations, correlations, and parameter distributions shapes of 

the synthetic population match those of the original data set. This approach preserves 

key relationships between parameters. Synthetic models can also be generated to meet 

any arbitrary set of pre-determined statistical attributes. The methods for model fitting, 

modification, and generating synthetic stalks are described in the following sections.

Creating Specimen-Specific Parameterized Models

Several steps were required to fit the parameterized model to an individual stalk 

specimen. First, ellipses were used to capture each cross-section of the original stalk 

geometry. The ellipse fitting resulted in axial profiles for the major diameter, minor 
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diameter, and rind thickness similar to those shown in Figure 4. The landmarks were 

then identified. The coordinates of landmark points provided 36 of the 51 parameters 

(see Table S1). 

Next, transitions between each pair of landmark points were captured using 

empirical eigenfunctions. Each transition pattern between landmark points was 

converted to local and subtracted coordinate systems as described in Equations 1 - 4. 

This produced a vector of {ysub}values for each transition pattern. The following 

equation was then used to approximate {ysub}:

    (5)

Here, [E] is a matrix of the eigenvectors to be included in the parameterization, {c} is a 

vector of coefficients, and {ε} is a vector of residuals. The least-squares method was used

to obtain the coefficient vector {c} which was then used in Equation 4 to parameterize 

each profile. 

Creating a Population of Synthetic Models 

The Gaussian copula method was used to create a population of synthetic models 

that had the similar statistical characteristics as the original set of 900 stalks. First, the 

parameterized model was fit to all 900 stalks in the original data set. This produced a 

900x51 matrix of parameter values. This matrix was then used to calculate the 51x51 

correlation matrix, R as well as empirical cumulative density functions for each 

parameter. 

The Gaussian copula is formed by performing Choelesky factorization on the R matrix to

obtain a lower diagonal matrix L, sampling a set of standard normal random values, and

then mapping those values into new coordinates according to the relationships between 

variables captured by R, and probability density characteristics captured by the 

cumulative density functions. This process is described in more detail in (McClarren et 

al., 2018). 

This process created a new population of N stalks. The value N can be set to any 

desired value. The quality of Gaussian copula was assessed by creating a new synthetic 

set of 900 stalks. The mean and standard deviation for both the original and synthetic 
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sets were compared. The correlation matrix of the synthetic set was also compared term-

by-term with the original correlation matrix. Finally, the empirical cumulative density 

functions of the synthetic stalk set were compared term-by-term to the original 

empirical density functions. 

Finite Element Models

The finite element method was used to create parameterized models of maize 

stalks. Models were generated using Abaqus/CAE 2022 by defining the appropriate 

material properties, mesh, and boundary conditions, as described in the following 

sections.

Mesh

The mesh of each parameterized finite element model was broken into three 

sections: top end, node region, and bottom end. The node region spans 10 mm with the 

fixed boundary condition in the center. The top and bottom ends were meshed using a 

hexahedral mesh due to the simplicity/regularity of the geometry in this region. The 

nodal region was meshed using a tetrahedral mesh to account for the more complex 

internal geometry of this region (see Figure 6). The rind was given high mesh density 

while the pith was given low mesh density. This was done as most stresses in bending 

occur in the rind. An extensive mesh convergence study was performed to ensure that 

this mesh produced mesh-converged results. 

                                            

Figure 6: Isometric view of the finite element model and mesh. Enlarged section shows
the transition from tetrahedral to hexahedral elements.
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Boundary Conditions

The boundary conditions for the parameterized finite element 3D model match 

the shear and moment loads that were present upon the modeled segment during 

physical 3-point bend testing. This approach has been previously used and validated 

(Stubbs et al., 2022). Because the finite element models only account for a portion of the

stalk, as shown in Figure 1, the relevant shear and moment loads were applied to the end

faces of the finite element model. The loading anvil at the center of the stalk was held 

stationary with no degrees of freedom allowed at the point of contact between the anvil 

and the stalk to prevent rigid body rotation/translation. The expressions for shear and 

moment values are provided in Table 1 and the diagram in Table 1 shows these applied 

loads. Using the measured test values, the forces and moments for each finite element 

model was calculated using the equations in Table 1. In the finite element model, the 

central anvil of the  finite element models was assumed to be fixed in six degrees of 

freedom.

Table 1: Loads applied to the finite element model.

Load Type Bottom Face Top Face

Force Fa=
M fail

A
Fb=

M fail

B

Moment M a=
A−a
A

M fail M b=
B−b
B

M fail

A distance between left-hand support and applied load in the 3-point bending test

B distance between right-hand support and applied load in the 3-point bending test

Mfail maximum bending moment applied during physical 3-point bending tests

Page 15 of 31

https://mc.manuscriptcentral.com/isplants

Manuscripts submitted to In Silico Plants



Mechanical Tissue Properties 

Both pith and rind tissues are characterized by fibers which run longitudinally 

through the stalk. Plant tissues typically experience low levels of strain. As a result, both 

rind and pith tissues were modeled as linearly elastic transversely isotropic, as has been 

done in several previous studies (Stubbs et al., 2018, 2022; Von Forell et al., 2015). This 

material model requires five independent material properties for each tissue type, 

consisting of the modulus of elasticity in the fiber direction (E3), the modulus of 

elasticity in the transverse plane (E1 and E2), the shear modulus in the fiber direction (

G13 and G23), the shear modulus in the transverse plane (G12) and Poisson’s ratio (ν). 

Currently, only E1, E2, and E3 in the rind as well as E1 and E2 in the pith have been 

measured for maize tissues (Al-Zube et al., 2017, 2018; Stubbs et al., 2019, 2020; Zhang 

et al., 2016).

Stochastic Sampling of Material Property Values

Because not all the properties of maize tissue have been measured 

experimentally, some estimation is always required to obtain a full set of material 

properties. In previous studies, these estimates have had a limited scope: typically a 

single estimate was used for all other tissues (Stubbs et al., 2018, 2022; Von Forell et al.,

2015) An unnaturally low level of biological variation in models can obscure the 

influence of material properties (Cook et al., 2014). In contrast, a direct treatment of 

variation and uncertainty provides much more reliable insights (Nelson et al., 2019) 

In this study, realistic ranges were estimated for all material properties. Values 

for individual models were randomly sampled to account for the fact that these material 

properties are subject to significant levels of uncertainty. While many mechanical 

properties of maize tissues have not been measured, the relevant properties have been 

measured for many varieties of wood, both hardwood and softwood (Green et al., 1999). 

The longitudinal modulus of elasticity across many wood species has been reported by 

Green et al. as ranging from 4 Gpa to 16 GPa. This range corresponds almost exactly to 

the range reported by Al-Zube et al, 2018 for maize rind tissue: 3 - 17 GPa. Estimates for 

ranges of the missing maize material properties were based upon the ranges and ratios 
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of the same material properties reported for wood (Green et al., 1999). To aid in this 

process, we also referred to thermodynamic constraints which exist when using a 

transversely isotropic material model. These constraints are (Lempriere, 1968):

G12=
E1

2(1+ν12)
   (6)

0<ν<0.5 (7)

Here ν12 represents passive deformation in the 1 direction due to applied tension in the 2

direction. 

The most important material property of maize stalks is the longitudinal modulus

of the rind (Ottesen et al., 2022). In this study, the longitudinal modulus of the rind was 

measured directly for each specimen using the bending test method described in Al 

Zube et al 2018. The remaining properties were randomly sampled from the ranges 

provided in Table 2 below. Normal distributions were used where possible. If 

insufficient information was available, uniform distributions were used. 
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Table 2: Summary of methods for obtaining material properties for finite element

models.  All modulus values are in GPa. Poisson’s ratio values are unitless. Sampling

distributions are specified as pairs. Normal distribution: (mean, standard deviation);

Uniform distribution: (lower bound, upper bound).

Property Method Distribution Pith Rind Source

E1, E2
Random

Sampling
Normal (0.026, 0.01) (0.85, 0.39) Stubbs et al., 2020

Rind E3 
Specimen-

specific
Empirical n/a specimen-specific

Al-Zube et al.,

2018

Pith E3
Random

Sampling
Normal (0.05, 0.45) n/a

Sutherland et al.

(in review)

G12 Calculated n/a
E1

2(1+ν12)
Theory

G13 & G23
Random

Sampling
Uniform Ratio (0.03⨉E3,  0.21⨉E3)

Green et al., 1999ν12
Random

Sampling
Uniform (0.2,  0.45)

ν13&ν23
Random

Sampling
Uniform (0.009,  0.086)

Finite Element Analyses

Two analyses were performed for each model: flexural stiffness and linear 

buckling analysis. The flexural stiffness of the model was obtained using a static 

structural analysis. The force/deformation relationship from simulations was used to 

calculate an equivalent flexural stiffness which was then compared to the measured 

value of flexural stiffness. Critical buckling loads were obtained using a linear buckling 

analysis. This type of analysis solves for instabilities in the structure and can be used for 

traditional column buckling or localized buckling. In this study, linear buckling analysis 

provided the loat at which localized buckling instabilities occurred. This load represents 

and estimate of the ultimate bending strength of the stalk.  It should be noted that linear
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buckling analysis always overpredicts ultimate bending strength, but it is 

computationally much more efficient than dynamic explicit analyses (Bolton, 2020; Xu 

et al., 2013). Both flexure and linear buckling methods have been previously validated 

for this purpose (Stubbs et al., 2022). 

Model Validation

Cross-Fold Validation of Parameterization Method

When using machine learning methods, a portion of the data is used to train the 

model, with the remaining data held in reserve for validation of the model. The 

geometric maize stalk data used in this study was obtained from five different hybrid 

varieties. As these varieties are genetically distinct, the hybrid type was used as the basis

for partitioning between training and validation sets. Rather than arbitrarily choosing 

certain hybrids for training and others for validation, we used the more robust cross-

fold validation approach to investigate all possible training/validation combinations 

(Kolodiazhnyi, 2020). In each training/validation set, the training set was composed of 

four hybrids with the remaining hybrid used for validation. Cross-validation consisted of

repeating this process five times (one for each hybrid was used as the validation set). 

Model validation was quantified by computing the R2 value between validation 

set parameter profiles and the corresponding “fit” obtained when using the model 

derived from the training data. This was performed for each stalk in the validation set 

and the profiles obtained after fitting the stalk with the model. 

Validation of Finite Element Model Predictions

Finite element models were validated by comparing their predictions to the 

corresponding empirical test data (flexural stiffness and ultimate strength). Each 

parameterized specimen specific model was created by fitting the parameterized ellipse 

model to the geometry of the corresponding CT scan. The specimen-specific longitudinal

modulus of the rind (E3) was also obtained from experimental test data. To account for 

uncertainty in the remaining material properties, ten versions of each specimen-specific 

model were created. Each version utilized the same geometry and rind modulus, but 
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different random values of the remaining material properties. This approach helps 

ensure that the validation results are not an artifact of a narrowly-specified set of 

material properties. 

RESULTS

Geometric cross-validation

The parameterized model geometry was compared to the actual stalk geometry by 

comparing actual profiles for major diameter, minor diameter, and rind thickness to 

their parameterized model counterparts. For all 5 hybrids and across all three profiles, 

the R2 values between original profiles and the parameterized profiles averaged 0.96 

with the lowest value across all hybrids and profiles of 0.91. This indicates that the 

parameterization approach that has been developed is sufficiently flexible to accurately 

capture a range of maize stalk geometries. It should be noted here that each hybrid was 

grown at a wide range of planting densities and that planting density is known to have a 

strong effect on stalk morphology (Jun et al., 2017; Sher et al., 2017). The cross-

validation statistics across validation sets is provided in Table 3.

Table 3: Cross-validation R2 values between the CT-based profile and corresponding

parameterized models. Sample sizes varied between sets. The smallest sample size was n

=188.
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Model creation time

The parameterized model automates the process of model creation, allowing 

models to be created programmatically instead of manually. The previous method 

required CT scanning and manual processing of the CT data to create each finite-

element model. Including scanning time and manual manipulation of data, this process 

required approximately 45 minutes per model/specimen. 

The parameterized model is capable of building models at a rate of 40 

seconds/model. This is 70x faster than previously possible and no manual model 

manipulation is required.  Within a few minutes, the computer code that controls the 

model building process can be programmed to create hundreds or thousands of models. 

Model solve time is unchanged with respect to prior models. Using a Dell Precision 

5820 Tower Workstation, each flexural analysis required 30 minutes of solving time and

each buckling analysis required 90 minutes. Excluding mesh convergence, the results 

described below represent the creation and analysis of 1160 unique finite-element 

models.

Predictive accuracy of finite-element models 

Direct comparisons between experimental results and simulated behavior were 

performed to assess the validity of the parameterized model. A set of 59 stalks were 

randomly selected from the original set of 900 tested stalks. For each of these stalk 

geometries, a sample of 10 replicates were created, each having a unique set of plausible 

material properties. This resulted in 590 unique finite-element models. Across the 590 

simulation results, predicted flexural stiffness compared very favorably to the measured 

flexural stiffness, with an R2 value of 0.97 and a best fit line of slope 1.11. The average 

response across all replicates was calculated for each stalk geometry and also compared 

to measured flexural stiffness values. Both data sets are shown graphically in Figure 7.  

Random variations in material properties had a relatively minor influence on the 

predicted values of flexural stiffness. This effect was quantified using variance 

decomposition. Only 1% of the total variance was due to variation in material properties.

This suggests that flexural stiffness is primarily dependent upon geometry and the 
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longitudinal modulus of the rind (which was not varied because it was measured for 

each specimen).

Figure 7: Comparisons between measured flexural stiffness (horizontal axis) and

predicted flexural stiffness (vertical axis). The left-hand panel depicts the individual

values obtained through random sampling of material properties. The right-hand panel

shows the average response of each individual stalk. Error bars represent 95%

confidence intervals on the mean value of each distribution.

A similar comparison was performed for the prediction of ultimate bending 

strength, which was assessed using linear buckling analysis. It is well-known that linear 

buckling analysis tends to overpredict actual buckling loads (Bolton, 2020; Xu et al., 

2013). In a previous study using CT-based maize stalk geometries, linear buckling 

analysis was correlated with ultimate strength, but overpredicted it by a factor of 

approximately 10x (Stubbs et al., 2022). In this study, linear buckling results were also 

well-correlated with ultimate strength but a more moderate over-prediction of about 5x 

was obtained. Results for the full set of simulated stalks as well as replicate means are 

shown graphically in Figure 8. With material variation included, the R2 value between 

simulations and test results was 0.56. With material variation excluded (replicate 

averaging), the R2 value between simulations and test results increased to 0.73. 
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Variation in material properties had a very noticeable influence on predicted 

ultimate strength. Using variance decomposition, it was found that 20% of the variation 

in predicted ultimate strength was caused by material property variation. This explains 

the broader spread of data in Figure 8 as compared with Figure 7. The much stronger 

influence of material properties suggests that material properties have a significant 

effect on ultimate strength.

Figure 8: Comparisons between measured flexural stiffness (horizontal axis) and

predicted flexural stiffness (vertical axis). The left-hand panel depicts the individual

values obtained through random sampling of material properties. The right-hand panel

shows the average response of each individual stalk. Error bars represent 95%

confidence intervals on the group mean for each stalk geometry.

Assessment of the Synthetic Population

The synthetic population of 900 stalks exhibited nearly identical statistical 

characteristics as the original population, thus indicating that the Gaussian copula 

method can be used to create unique parameterized maize stalk models. Comparisons 

between the statistical characteristics of the original data set and the synthetic data set 

are provided in Figure 9 below. As shown in the upper left-hand panel of Figure 9, the 
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mean parameter values of the original set were virtually identical to the mean parameter

values of the synthetic data set. The same was true for the standard deviations and 

parameter correlation values. Finally, term-by-term comparisons of the original and 

synthetic cumulative density functions were also very similar (lower right panel of 

Figure 9). 

Figure 9: Scatter plots depicting the statistical similarities between empirical

parameters (horizontal axes) and synthetic parameters (vertical axes). 

The similarities between the original and synthetic data sets were further 

visualized by comparing the probability density distributions and scatter plot 

relationships of 4 representative parameter pairs. The scatter plot relationships between

these parameter pairs along with the distributions of each parameter are shown in 

Figure 9. Both the original data (open circles) and the synthetic data (orange dots) are 

depicted. This figure illustrates the high degree of similarity between the original and 

synthetic data sets. 
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Figure 9: Histograms and scatter plots for 4 selected parameters from the original

(blue, open circles) and synthetic (orange, dots) data sets.

DISCUSSION

Using the parameterized model in studies on maize biomechanics

The parameterized model can be used in two main ways. First, the model can be 

used to provide a close approximation to the geometry of a real maize stalk. This is 

accomplished by obtaining empirical profiles for the major diameter, minor diameter, 

and rind thickness. Landmark points are then identified on the actual stalk and matched

by the parameterized model. Finally, transitions between landmark points are captured 

by performing least-squares regressions on the transition pattern of the real stalk with 

the series of empirical eigenfunctions of the parameterized model as the basis functions.

The specimen-specific “fitting” approach requires detailed geometric information

on the stalk to be modeled. Such data could be obtained from a CT scan or from 
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photographs. Once the parameterized model has been used to match a physical 

specimen, the behavior of the specimen specific model can be simulated. In addition, 

the model can be modified to assess sensitivity of the specimen to hypothetical changes 

in geometry and material properties. Alternatively, optimization can be performed, 

using the specimen-specific model as a starting point. 

The second approach is to create synthetic stalk populations without the need for 

specimen-specific data. This is done by specifying the set of 51 parameter values. In this 

approach, the chosen values must be mutually compatible, and profiles should be 

representative of actual maize stalks. However, the data that was used to create the 

parameterized model can be used as a starting point.

Using this approach to model other grain species 

All grains rely upon a similar geometric architecture. Thus, it may be possible to 

directly apply the parameterized model developed in this study to other grain species 

such as sorghum, wheat, oats, and rice. More research would be needed to determine 

the applicability of this model to other species. Alternatively, the methods described in 

this study could certainly be used to develop a parameterization that is unique for each 

grain species.  

Model Limitations and Future improvements

The model described in this study captures gross anatomical features, but does 

not model smaller features such as internal vascular bundles, internal transitions 

between internodes, and the tendency of the stalk cross-section to change dramatically 

when primary or secondary ears are developed. Additional research will be needed in 

these areas.

This model relies upon the assumption that each cross-section of the stalk is 

purely elliptical. In our previous research, we showed that this assumption provides a 

favorable balance between model complexity and predictive power. In some loading 

conditions, the presence of the ear groove may be necessary to accurately predict stalk 
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mechanics. If the ear groove is needed, additional modeling efforts would be required to 

add a parameterized ear groove to the model. We previously described a parameterized 

cross-sectional model of the maize stalk that includes the ear groove and other minor 

geometric factors. That model could be combined with the model in this paper to 

simulate the ear groove with relatively high fidelity. 

This model assumes that the maize stalk can be accurately modeled using two 

distinct tissue types: rind and pith. In reality, the boundary between rind tissue and pith

tissue is gradual rather than distinct. More research would be needed to capture the 

functionally graded aspect of maize stalks, but the exterior shape of the gross anatomy 

provided by the model outlined in this paper could be used as a starting point for such a 

model. 

CONCLUSION

This study provides a major improvement over the time-consuming process 

previously required to create specimen-specific models of maize stalks. As evidenced by 

validation data, this new model accurately captures the behavior and trends observed in 

empirical tests of maize stalks. Most importantly, this new model allows individual 

physical features of the maize stalk to be independently controlled, thus opening the 

door to future studies focused on geometric sensitivity analysis, optimization studies, 

and the creation of synthetic populations of maize stalks for future study. 
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