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METHODOLOGY

Axial variation in flexural stiffness of plant 
stem segments: measurement methods 
and the influence of measurement uncertainty
Nathanael Martin‑Nelson1, Brandon Sutherland1, Michael Yancey1, Chung Shan Liao1, 
Christopher J. Stubbs2 and Douglas D. Cook1*   

Abstract 

Background:  Flexural three-point bending tests are useful for characterizing the mechanical properties of plant 
stems. These tests can be performed with minimal sample preparation, thus allowing tests to be performed relatively 
quickly. The best-practice for such tests involves long spans with supports and load placed at nodes. This approach 
typically provides only one flexural stiffness measurement per specimen. However, by combining flexural tests with 
analytic equations, it is possible to solve for the mechanical characteristics of individual stem segments.

Results:  A method is presented for using flexural tests to obtain estimates of flexural stiffness of individual segments. 
This method pairs physical test data with analytic models to obtain a system of equations. The solution of this system 
of equations provides values of flexural stiffness for individual stalk segments. Uncertainty in the solved values for 
flexural stiffness were found to be strongly dependent upon measurement errors. Row-wise scaling of the system of 
equations reduced the influence of measurement error. Of many possible test combinations, the most advantageous 
set of tests for performing these measurements were identified. Relationships between measurement uncertainty 
and solution uncertainty were provided for two different testing methods.

Conclusions:  The methods presented in this paper can be used to measure the axial variation in flexural stiffness of 
plant stem segments. However, care must be taken to account for the influence of measurement error as the individ‑
ual segment method amplifies measurement error. An alternative method involving aggregate flexural stiffness values 
does not amplify measurement error, but provides lower spatial resolution.
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Introduction
Three-point bending tests are frequently used to charac-
terize the mechanical properties of plant stems [1–3]. In 
contrast to other methods, such as compression or ten-
sile testing, this testing approach requires minimal sam-
ple preparation, allowing tests to be performed relatively 
quickly [4, 5]. Two types of tests can be performed using 
three-point bending: non-destructive flexural tests and 

destructive bending strength tests [3]. Flexural stiffness 
can be obtained from both tests, and has been shown to 
be highly correlated with bending strength (ibid). Flex-
ural stiffness measurements can also be used to obtain 
mechanical tissue properties information without dam-
aging or dissecting the specimen [5, 6]. Flexural stiffness 
also provides information regarding gradients in mor-
phology and material properties which are closely related 
to mechanical stability [6, 7].

Flexural tests of plant stems typically exhibit good 
repeatability values [5]. Plant stems can be tested in 
three-point bending as long as care is taken to mini-
mize the influence of transverse compression of the 
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stem cross-section, which can introduce serious errors 
[8, 9]. This implies that loads should be placed only 
at the junction between segments, which are known 
as nodes. Figure  1 shows a CT scan cross-section of 
a maize stalk (adapted from a prior study [10]). The 
nodes can be seen as dark regions between segments. 
The higher density of nodal regions makes them far less 

susceptible to transverse compression than internodes 
(the regions between nodes).

Because loads and supports must be placed at nodal 
locations [8, 9], the shortest test that can be performed 
includes three nodes and two internodes (Tests 1–3 in 
Fig.  2). Three-point bending tests can be expanded to 

Fig. 1  Major and minor diameter of a maize stalk cross-section along the length of the stalk. Bottom image is from a CT scan where darkness of the 
tissue is proportional to tissue density (image from [10], used with permission)

Fig. 2  The 10 possible testing configurations for a stem specimen consisting of four internodes and 5 nodes
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include longer spans as well as asymmetric tests (Fig. 2, 
Tests 3–10).

Each of the tests shown in Fig. 2 involves multiple seg-
ments. This study focuses on the idea that multiple tests 
can be combined with analytic equations to solve for the 
flexural stiffness of each individual internodal section. 
This would enable future researchers to measure the vari-
ation of flexural stiffness and mechanical tissue proper-
ties along the length of plant stems without inducing 
damage to the specimen. This information would provide 
valuable insights into structural patterns and to open 
questions such as the optimal tapering of plant stems 
[7]. However, a major challenge in this approach is the 
influence of experimental error on the solution, which 
can present a challenge to the accuracy of biomechanical 
models [11–13].

The purpose of this study was to develop the equa-
tions needed to solve for the flexural stiffness of indi-
vidual stem segments and quantify the influence of 
experimental errors on the solution process. This study 
also addresses the practical feasibility and limitations of 
this method and provides practical recommendations for 
addressing measurement error in such tests. This study 
focuses on maize stalks because of their high economic 
importance [10, 14, 15].

Methods
This study utilized experimental, analytical, and compu-
tational methods. Analytical beam models were used to 
formulate the system of linear equations required to solve 
for the flexural stiffness of individual internodes. The 
influence of measurement uncertainty on solution uncer-
tainty was explored using an empirical/synthetic data set. 
Throughout the paper, uncertainty is quantified in terms 
of the “standard measurement uncertainty” (u, standard 
deviation of error values) [16]. This allows the reader to 
readily convert uncertainty into small sample or large 
sample coverage intervals as needed [17].

System of equations and modeling assumptions
Like many plants, maize stalks are characterized by 
periodic nodes and internodes (see Fig.  1). The inter-
nodal region is fairly uniform in cross-sectional shape 
[11]. From the base to apex, each successive internode 
is slightly smaller than the one preceding it (see Fig. 1). 
Maize stalks are therefore commonly approximated as a 
series of segments, each of which has a constant cross-
section and constant material properties [8]. In this study, 
we assume and solve for a constant aggregate flexural 
stiffness for each internode. Stubbs et  al. demonstrated 
that the Euler–Bernoulli beam theory is relevant to plant 
stems even though plant tissues are neither isotropic nor 
homogeneous in the cross-section [18].

Briefly stated, Euler–Bernoulli beam theory and Cas-
tigliano’s Theorem were used to write equations relating 
displacement and flexural stiffness for each of the test-
ing configurations shown in Fig.  2. Flexural stiffness is 
given the symbol K, and each internode is designated by 
a letter A–D (KA, KB, KC, KD). Finally, the length of each 
stem segment was designated by the corresponding lower 
case letter (a–d). A diagram illustrating these quantities, 
as well as the test configuration and the corresponding 
force/displacement equation for Test 1 are provided in 
Fig. 3.

The reader can confirm in a few steps of algebra that 
Eq.  1 reduces to the familiar equation for symmet-
ric three-point bending of a uniform beam (δ = FL3/
(48EI)) when both a and b have values of L/2, and when 
KA = KB = EI. The full set of 10 equations is shown below. 
In this equation, ɸi indicates the force/displacement 
slope of each test.

(1)
δ

F
= 3(a+ b)2

(

a
3
b
2

IEA
+

a
2
b
3

IEB

)

.

Fig. 3  Diagram of a 4-internode stem in the configuration of Test #1. Labels indicate the length of each internode (a–d) as well as the flexural 
stiffness of each internode (KA—KD)
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Aggregate stiffnesses
An alternative to the system of equations shown above is 
to only utilize tests 1, 2, and 3. Then, instead of solving 
for the 4 individual flexural stiffness values (KA, KB, KC, 
KD), three aggregate flexural stiffness values are obtained 
(KAB, KBC, KCD). This approach is similar to Eq. 1, but a 
single aggregate flexural stiffness value is assumed for the 
entire two-internode span. For example, Test 1 can be 
used with the following equation to obtain the aggregate 
stiffness KAB:

This approach requires only three tests, but does not 
provide the spatial resolution of the system of equations 
shown above.

Validation of analytic equations
The analytic system of equations described above was 
validated by creating a model stalk and simulating the 

(2)

(3)KAB =
F

δ

a
2
b
2

3(a+ b)
.

set of 10 tests using commercial finite-element software 
(FEA). Close agreement between the analytic model and 
the finite-element models was found. The maximum 
discrepancy between the finite element model and the 
analytic equations was 2.2%, which was a result of the 
finite element models accounting for shear deformation 
whereas the analytic equations do not. The issue of shear 
deformation is discussed further in “Limitations” section.

Uncertainty analysis
All four unknown K values can be obtained by choos-
ing any combination of 4 or more tests. A combinatorial 
analysis revealed that there are 848 different test combi-
nations that can be used to solve for the unknown K val-
ues (e.g., 10 choose 4 = 210 test combinations; 10 choose 
5 = 252 combinations;… etc.). Unfortunately, most of 
these test combinations are ill-conditioned. Even when 
all 10 tests are used, the solution process amplifies meas-
urement errors, leading to unreliable solution values. A 
series of analyses were therefore performed to determine 
(a) if all combinations of these equations were equally 

Table 1  Summary statistics for the data used for analysis of solution methods

Length (mm) Major diameter 
(mm)

Minor diameter 
(mm)

Rind thickness 
(mm)

Moment of inertia 
(mm4)

Modulus of 
elasticity (Gpa)

Flexural 
stiffness (Nm2)

Internode A 153.7 22.9 19.3 2.8 17.0 2.5 1.7 0.5 1699.3 972.5 11.1 2.0 18.8 11.2

Internode B 175.1 23.5 18.0 2.9 16.0 2.4 1.5 0.4 1244.2 713.4 13.7 8.1

Internode C 173.5 24.2 16.6 2.9 15.1 2.3 1.3 0.5 1313.6 765.9 14.5 8.8

Internode D 187.4 24.2 14.8 2.9 14.3 2.4 1.2 0.6 980.4 579.2 10.8 6.7

Type Measured Measured Measured Measured Calculated Sampled Calculated
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prone to this effect and (b) the sensitivity of the system to 
errors in the measurement of length and force/displace-
ment slope.

The investigation of these issues was performed with a 
combination of experimental and synthetic data. Experi-
mental data on stalk morphology was incorporated to 
accurately represent real plant specimens. By augment-
ing experimental data with synthetic data, it was possible 
to pre-specify the values of experimental measurement 
errors. This in turn allowed us to determine the magni-
tude of resulting solution errors.

Experimental/synthetic test data
Experimental data consisted of internodal lengths, 
internodal diameters, and rind thickness values from 
200 maize stalks (data graciously provided by Dr. Dan-
iel Robertson, University of Idaho). The area moment 
of inertia of each internode was computed using the 
elliptical cross-section assumption [19]. Finally, flex-
ural stiffness values for each internode were calculated 
by multiplying the moment of inertia by a longitudi-
nal modulus of elasticity value. Modulus of elasticity 
values were not varied within each stalk since little is 
currently known about the pattern of variation of this 
factor within individual stalks. The modulus of elastic-
ity for each stalk was randomly selected from within a 
normal distribution with mean value of 11.1  GPa and 
a standard deviation of 2  GPa. This distribution was 
chosen because it spans the ranges of modulus values 
reported previously with validation across multiple 
measurement modalities [4, 5]. Lengths and flexural 
stiffness values were entered into the analytic equations 
to compute a corresponding force/displacement slopes. 
The resulting set of length, flexural stiffness, and force/
displacement values were assumed to have zero error 
and were used as reference data throughout the study. 
Summary statistics for the zero-error data set is shown 
in Table 1.

To simulate the physical testing process, random errors 
were added to each internode length and each force/
displacement slope to create synthetic test data. This 
approach allowed us to control the degree of measure-
ment uncertainty in each measurement type. The equa-
tions for generating random errors are shown below (for 
the sake of brevity, we show equations for only a single 
internode and a single force/displacement slope):

In these equations, ai represents a realistic value 
for the measurement of the length of segment A. The 

(4)ai = a0 + ǫiǫi ∼ N (0,uL),

(5)φi = φ0 + ǫiǫi ∼ N (0,uφ).

measurement process is simulated by modifying the true 
length, a0 by the introduction of error ϵi. Similarly, the 
quantity ɸi represents a realistic measurement which has 
its reference value (ɸ0) modified by a random measure-
ment error. All error values were drawn from a Gaussian 
(normal) distribution with a mean of zero and a specified 
uncertainty for length (uL) or slope (uɸ). Throughout this 
paper, uncertainties are specified as standard measure-
ment uncertainties (i.e., standard deviation of measure-
ment errors) [17].

Experimental design
A factorial design was used with three levels for uncer-
tainty in length (0, 1, and 2  mm), three levels of slope 
uncertainty (0, 2.5%, and 5%), 200 different stalks, and 
the 848 possible test combinations. At each design 
point, a set of 50 realistic measurements were created 
using the method outlined in Eqs. 3 and 4. Each repli-
cate data set thus represented a potential set of real 
measurement data. This sampling scheme resulted in 
~ 50  million simulated solution processes. This large 
number was possible because the analytic models could 
be created and solved in a small fraction of a second. For 
each simulated solution process, the primary quantity 
of interest was the 4 relative errors (one for each flexural 
stiffness). Additional quantities were also calculated, 
including the condition number of the original system 
and the condition number of the system after scaling 
such that each row of the system had a maximum value 
of unity.

Fig. 4  Distribution of errors across stalks and replicates when using 
all 10 equations. Each box summarizes 2500 relative error values. 
Boxes indicate the 25th, 50th, and 75th percentiles while the whiskers 
span 95% of the data. Standard uncertainty values (u) are provided for 
each distribution
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Results
Error distributions
Simulated measurement errors at various levels caused 
corresponding errors in K values. We first examine the 
situation in which all 10 tests/equations were used. 
The standard uncertainty in length measurements was 
set at 1  mm and the uncertainty in slope measurement 
was set at 2.5%. These values were used to simulate the 
10-test procedure for 50 different stalks. This process was 
repeated 50 times, thus providing a total of 2500 simu-
lated solutions for each internode. In parallel with these 
simulations, Tests 1, 2, and 3 were used to solve for the 
aggregate flexural stiffnesses corresponding to each test.

Simulated solution values were then compared to the 
true values. The distributions of the relative error for 
these solutions were used to describe the solution uncer-
tainty, as seen in Fig.  4. As expected, error bias (the 
horizontal red bars in each box of Fig.  4) was relatively 
low, indicating that each solution method was unbiased. 
When solving for individual internode stiffness values, 
scaled equations reduced the uncertainty of each dis-
tribution, and are therefore used in the presentation of 
subsequent results. The aggregate method exhibited the 
lowest uncertainty of the three solution methods.

The error distributions for each of the 848 test combi-
nations were similarly characterized by bias (the median 

Fig. 5  Scatter plots for results from each internode showing the median error and standard uncertainty of various test combinations. The 32 best 
test combinations are shown by larger, outlined dots. Data in this figure corresponds to systems with standard uncertainty values of ± 1 mm on 
length measurements, ± 2.5% on slope measurements, and in which all rows were normalized before solving the system of equations

Fig. 6  The 32 best test combinations. Each column represents one test combination where green indicates that a test was included and white 
indicates that a test was omitted. As seen in this figure, tests 1, 3, 4, 5, and 6 were universally included in the set of 32 best test combinations along 
with any combination of tests 2, 7, 8, 9 and 10
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error) and standard uncertainty (u). Across the 848 test 
combinations, bias values were clustered around zero, 
with over 99% of test combinations exhibiting bias values 
less than 1%. While bias was consistently low, the spread 
of error values varied widely. Figure 5 depicts bias/uncer-
tainty scatter plots in which each dot represents the error 
distribution of a single test combination from among 
the 848 possible test combinations. As seen in this fig-
ure, uncertainty values ranged from approximately 10% 
to over 100%. Some test combinations even had uncer-
tainty values as high as 1000%. This scatter plot of Fig. 5 
has been scaled to show the most relevant test combina-
tions (i.e. unusually high values of bias and spread are not 
shown).

Figure  5 also highlights the “best combinations”. 
These test combinations were found to have the low-
est uncertainty among all possible test combinations. 
Furthermore, these test combinations were consistent 
across all 4 internodes. For internodes B–D, the best 
combinations exhibited median errors less than 0.25% 
and uncertainty levels of less than 13%. The uncertainty 
for internode A was consistently higher, with levels in 
the neighborhood of 25%. The reasons for this are not 
yet fully understood, but errors seem to be roughly pro-
portional to the overall stiffness (compare the uncer-
tainty levels in Fig.  5 to the stiffness values listed in 
Table 1).

Best combinations, condition number, and scaling
A set of 32 test combinations was found to have lower 
uncertainty than the remaining tests. These 32 test 

combinations had similar bias and uncertainty character-
istics. An examination of these 32 tests revealed that tests 
1, 3, 4, 5, and 6 were present in each of the 32 best test 
combinations. There appeared to be little or no depend-
ence upon the remaining 5 tests as the full set of 32 
consisted of Tests 1, 3, 4, 5, and 6 plus all possible combi-
nations of tests 2, 7, 8, 9, and 10. These combinations are 
shown graphically in Fig. 6.

The 32 “best” test combinations exhibited generally 
lower condition numbers than the other test combina-
tions. However, the condition number was not reliably 
predictive of error levels. This is because the condition 
number is a holistic matrix-level and vector-level ine-
quality [21]. As such, while it gives a general indication 
of whether or not a system is ill-conditioned, it does not 
predict individual errors. In order to obtain accurate esti-
mates of uncertainties, a direct sampling approach like 
the one used in this study is required.

Across test combinations, row-wise scaling was gener-
ally found to reduce error levels, though the effect was 
inconsistent. For example, row-wise scaling reduced 
the solution uncertainty by moderate amounts for 16 
of the 32 best combinations (percent reduction ranging 
from 4 to 23%). For 8 test combinations, scaling had a 
larger effect, with solution uncertainty being reduced by 
34–58%. Each of these 8 test combinations included test 
#10. Finally, for 8 test combinations, scaling provided a 
very substantial reduction, with reduction in uncertainty 
ranging from 73 to 82%. Each of these test combinations 
included Tests #9 and #10. Row-wise scaling improves 
these systems because it eliminates the disparity in force/

Fig. 7  Contour plots depicting the standard uncertainty (standard deviation) in solved values as functions of uncertainty in slope and length 
measurements. Note that slope errors are specified in percentage while length error is specified in mm. The half-width of 95% confidence interval 
widths (u95) are given for several contours as an additional point of reference
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displacement slopes (tests with longer spans have much 
lower force/deformation values than tests with shorter 
spans).

Solution uncertainty as a function of measurement 
uncertainties
The relationships between input uncertainties and the 
resulting output uncertainty are most readily visualized 
using contour plots. Two contour plots were created: 
one for the individual internodes stiffness method and 
one for the aggregate stiffness method. This was done by 
pooling together 2500 error values from each of the four 
internodes for a total of 10 k error values at each sample 
point. The standard uncertainty of the pooled data was 
then computed. Contour plots are shown in Fig. 7 below. 
Note that the axes of each plot are in terms of standard 
uncertainty, but specified in different units.

Because the best test combinations exhibited virtually 
identical uncertainty characteristics (see Fig. 5), the left-
hand panel of Fig. 7 is representative of the entire group 
of 32 best test combinations. Differences in uncertainty 
between the individual and aggregate solution methods 
can be seen by comparing the isolines between the two 
contour plots. For example, the first uncertainty isoline 
(6%) in the left-hand panel of Fig. 7 intersects both axes 
at approximately 1%. This implies that a 1% measurement 
uncertainty is amplified by this method, thus producing 
a solution uncertainty of approximately 6%. This is due 
to the ill-conditioned nature of the individual internodes 
method. In contrast, the first uncertainty isoline for the 
aggregate method (1%) intersects each axis at or below 
1%. This indicates that this method does not amplify 
measurement error.

Discussion
We have shown that multiple tests can be used to solve 
for the stiffnesses of individual segments of a plant stem. 
However, in applying this method to a representative set 
of test data, we discovered that the system of equations 
was ill-conditioned. In practical terms, this means that 
measurement errors are amplified by the solution pro-
cess. For the maize stalks used in this study, the ampli-
fication factor ranged between 6 and 8. The aggregate 
solution method did not amplify measurement errors. 
The disadvantage of the aggregate method is that it pro-
vides lower spatial resolution than the individual seg-
ment method.

Practical applications
Several practical issues should be considered when 
applying either of these methods. The first consideration 
is to quantify the measurement uncertainty of one’s test 
equipment. Manual measurement of plant stems with a 

ruler or tape measure yields standard uncertainty val-
ues of around 1 mm (equal to 95% uncertainty of about 
± 2 mm). Reliability of slope measurements will depend 
upon the equipment. Levels of slope uncertainty of 1% 
have been reported [6], but levels of 2.5% may be more 
representative for most testing arrangements. Uncer-
tainty can be ascertained by performing repeated tests 
with a small number of specimens. If the equipment is 
properly calibrated, the standard deviation of repeated 
tests provides a reasonable estimation of measurement 
uncertainty [22]. Values for measurement error can then 
be used in conjunction with Fig. 7 to estimate the result-
ing solution uncertainty.

Internodal patterns should also be considered. The 
morphology of most segmented plant stems sug-
gests that KA > KB > KC > KD. The morphological data of 
Table 1 shows that flexural stiffness of maize internodes 
decreases by approximately 20–30% between each pair of 
internodes. Sufficiently high levels of uncertainty could 
cause this stiffness pattern to be obscured or reversed 
between some pairs of internodes. For example, let us 
assume a conservative estimate for the change between 
segments of 20%. In this situation, the standard uncer-
tainty of the solution would need to be less than 5% to 
minimize the possibility in which KA is found to be less 
than KB even though the reality is that KA is greater 
than KB. As seen in Fig. 7, a solution uncertainty of less 
than 5% would require relatively low measurement 
uncertainties.

Another consideration is which tests to perform. The 
results of this analysis suggest that any of the 32 test com-
binations shown in Fig. 6 can be used, and that all these 
combinations produce similar error profiles. One’s intui-
tion may suggest that performing all 10 tests would pro-
vide an advantage by means of error cancellation (due to 
the use of a least-squares solution). However, in our sim-
ulations, the inclusion of 10 tests provided no additional 
benefit to performing any tests beyond tests 1, 3, 4, 5, and 
6.

One may consider performing Tests 1–6. This set of 
tests provides the ability to solve for both aggregate stiff-
nesses (using Tests 1–3), and/or individual internodal 
stiffnesses (Tests 1–6). Of course, if total testing time is 
to be reduced, the fastest approach is to use Tests 1–3 
and solve for aggregate stiffness values only.

We also examined the possibility of performing all 
10 tests, and then using the resulting data to solve the 
system repeatedly (i.e., 32 solutions, one for each test 
combination in Fig.  6). The idea here was that these 32 
solutions could then be averaged to further reduce the 
solution error. Unfortunately, this approach did not pro-
vide any additional accuracy. This is because each set of 
10 physical tests (see Fig. 2) has a unique measurement 
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error profile. Each measurement error profile produces a 
corresponding solution error profile. The solution error 
profile is roughly the same for each of the 32 solution 
methods, which is why averaging does not improve the 
accuracy of the result.

There is one final alternative if individual stiffness val-
ues are desired but measurement uncertainty cannot be 
reduced. This is to perform multiple replicates of tests 1, 3, 
4, 5, and 6 on each specimen. Average values for internode 
length and force/displacement slope would then be used in 
the solution process. This approach will reduce the overall 
measurement uncertainty and can thus be used to reduce 
the uncertainty in computed outcomes. Assuming a small 
sample size (t-distribution), repeating each test six times is 
sufficient to obtain a mean value for each test that has half 
the measurement uncertainty of a single test.

Case study
To illustrate practical outcomes, a realistic scenario was 
simulated. In this scenario, the set of standard uncer-
tainty levels for length and slope measurements were set 
at 1 mm and 2.5%. With these levels of uncertainty, the 
average uncertainty in flexural stiffness measurements 
(Fig. 7) should be approximately ± 17% (95% uncertainty 
is approximately ± 34%). A set of 50 instances of this case 
were simulated for a single stalk. The distribution of solu-
tions and true flexural stiffness values (red circles) are 
shown below in Fig. 8. As expected, the median value of 

each distribution lies very close to the true value. How-
ever, the uncertainty ranges for each internode are highly 
variable, with the first internode exhibiting whiskers 
ranging from 57% above the true value to 35% below the 
true value while the last internode has a 95% uncertainty 
of less than 20%. Thus, the average measurement uncer-
tainty can give rise to relatively high values of solution 
uncertainty due to the nature of the system.

The aggregate flexural stiffness approach is also illus-
trated in Fig.  8, depicted by the smaller boxes that lie 
between the larger boxes. Even with the same levels of 
uncertainty in length and slope measurements, the aggre-
gate approach provides much narrower solution uncer-
tainties. This approach also requires the fewest number 
of tests. The only disadvantage to this approach is that 
it does not provide individual flexural stiffness values. It 
should be noted that the aggregate value is an aggregate 
of internodes A and B while the second value is a aggre-
gate of internodes B and C. Nevertheless, a comparison 
between the aggregate results and the actual stiffness val-
ues shown in Fig. 8 demonstrate that this approach accu-
rately captures the true pattern of variation within the 
stalk, albeit with a lower spatial resolution.

Other testing approaches
The astute reader may wonder why the authors did not 
use a cantilever testing approach such as one shown in 
Fig.  9. By clamping each internode in turn, this testing 
approach would provide one flexural stiffness value for 
each flexural test, with no ill-conditioning and spatial 
resolution at the level of the internode. Unfortunately 
the irregular shape of most plant stems makes this test-
ing approach impractical. Clamps that are essentially 
rigid (steel, aluminum, etc.) will not conform to the plant 
stem, and thus allow some amount of bending deforma-
tion to the left of the cantilever point. This bending will 
adversely affect the measurements. If compliant (i.e. stiff 
foam or rubber) clamps are used, the compliance itself 
will also adversely affect the measurements. To be suc-
cessful, this testing method would require a specially-
designed clamp that can be articulated to precisely match 
the profile of the stem and then locked into place. Such a 

Fig. 8  A realistic data set consisting of 50 replicates of synthesized 
measurements performed on a single stalk with standard uncertainty 
for length and slope of 1 mm and 2.5%, respectively. Circles 
represent the exact values for each stiffness value. Boxes indicate the 
distributions of solved values. Each box represents the 25th, 50th, and 
75th percentile. Whiskers span 95% of the distribution. Smaller boxes 
indicate the aggregate flexural stiffnesses obtained for adjacent 
internodes by using Tests 1–3 (see Fig. 2 for test numbers)

Fig. 9  Schematic diagram of a cantilever testing arrangement
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mechanism is certainly possible, but would require a sig-
nificant amount of mechanical design work (Fig. 9).

Other approaches that were not investigated in this 
study include quantification of the displacement pattern 
along the length of the entire stalk. For example, optical 
methods of visualizing the displacement pattern of the 
entire stalk during bending tests have previously been 
used to assess bending displacement patterns [9, 20]. 
Such methods provide detailed deformation data with 
a single test. With further research, such methods may 
be amenable to solving for individual EI values. Alter-
natively, strain gauges may be used to complement the 
data of bending tests, thus potentially leading to new 
or modified methods that do not amplify experimental 
uncertainties.

Limitations
One limitation of this study was the use of Euler–Ber-
noulli beam models for all results related to uncertainty. 
The Euler–Bernoulli model neglects shear deformation, 
which would be present to some degree in all actual 
physical tests, thus causing a minor discrepancy between 
these results and real physical tests. Shear deformation 
was neglected since the authors are not aware of any 
studies that have reported on the shear modulus of maize 
stalk tissues. In addition, the Timoshenko shear coeffi-
cient for maize stems is unknown. It is therefore difficult 
to quantify the effect of neglecting shear in this case. But, 
shear deformation is very minor for most flexural tests 
performed on plant stems [18]. Further research would 
be needed to quantify this effect more adequately.

A second limitation is the assumption of uniform flex-
ural stiffness for each nodal segment. While this first-
order approximation has been used in this and previous 
studies [7], it neglects the influence of nodal regions. 
Data on the profile of morphology of maize stalks (Fig. 1) 
[10] suggest that nodes are stiffer than both neighbor-
ing internodes. However, at least one previous study 
suggested that nodes are less stiff than internodes, with 
internodes being more rigid [20]. Further research is 
therefore needed to confirm the influence of nodes on 
the overall flexural stiffness of plant stems. Alternatively, 
it may be insightful to model the maize stalk as a continu-
ously tapering beam, as has been done in other studies of 
leaf petioles and feathers [21–23].

Finally, in this study the system of equations and uncer-
tainty characteristics were outlined for a stem consist-
ing of 4 internode (5 nodes). The method can certainly 
be extended to longer stems consisting of more inter-
nodes, but this was not undertaken in this study. One 
challenge in doing so is that the number of possible test 
combinations increases rapidly as additional internodes 

are added. For example, 20 unique tests are possible for 
a stem having 5 internodes, with over 1 million possible 
test combinations.

Conclusions
We have demonstrated that the flexural stiffness of indi-
vidual internodes can be determined using the methods 
described in this paper. The individual internode method 
involves multiple non-destructive three-point bend-
ing tests. Test results are then used in a linear system 
of equations to obtain the flexural stiffness of individual 
internode segments. Multiple combinations of tests are 
possible, but all combinations were found to be ill-con-
ditioned. As a result, errors in the measurement of length 
and force/displacement slope are amplified, resulting in 
outputs (results) that exhibit significantly higher errors 
than the constituent inputs. An uncertainty analysis was 
carried out to investigate possible means of minimizing 
errors. We found that certain combinations of physical 
tests minimize uncertainty in the solution, and that row-
wise scaling reduced the level of error. However, even the 
best test combinations amplify measurement error by a 
factor of at least 6. Careful consideration should therefore 
be paid to measurement errors. If measurement errors 
exceed the average difference in flexural stiffness between 
adjacent segments, patterns of flexural stiffness may be 
obscured or distorted. An alternative to the individual 
method is the aggregate method. This method deter-
mines the aggregate flexural stiffness of segments con-
sisting of two adjacent internodes. This method requires 
fewer tests and does not amplify measurement error. The 
drawback to this method is that it provides lower spatial 
resolution than the individual method.

Relationships between input and output errors were 
described for both methods. This information indicates 
that sufficiently accurate measurement of the internode 
lengths and the force/displacement slope of flexural 
tests can be used to obtain meaningful results. Future 
researchers can use the information in this paper to 
make an informed decision about which testing method 
is more suitable, given a particular set of measurement 
equipment, time constraints, and other factors.
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